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We review the derivation of the metric for a spinning body of any shape and
composition using linearized general relativity theory (LGRT), and also obtain
the same metric using a transformation argument. The latter derivation makes it
clear that the linearized metric contains only the Eddington a and g parameters,
so no new parameter is involved in frame-dragging or Lense–Thirring effects.
We then calculate the precession of an orbiting gyroscope in a general weak
gravitational field described by a Newtonian potential (the gravitoelectric field)
and a vector potential (the gravitomagnetic field). Next we make a multipole
analysis of the potentials and the precession equations, giving all of these in
terms of the spherical harmonics moments of the density distribution. The analysis
is not limited to an axially symmetric source, although the Earth, which is the
main application, is very nearly axisymmetric. Finally, we analyze the precession
in regard to the Gravity Probe B (GP-B) experiment, and find that the effect of
the Earth’s quadrupole moment (J2) on the geodetic precession is large enough
to be measured by GP-B (a previously known result), but the effect on the
Lense–Thirring precession is somewhat beyond the expected GP-B accuracy.

1. INTRODUCTION

The Gravity Probe B satellite is scheduled to fly in the year 2000 (Keiser,
1998). It contains a set of gyroscopes intended to test the predictions of
general relativity (GR) that a gyroscope in a low circular polar orbit with
altitude 650 km will precess about 6.6 arcsec/year in the orbital plane (geodetic
precession) and about 42 milliarcsec/year perpendicular to the orbital plane
[LT precession, see Misner et al. (1973); Ohanian and Ruffini (1994), secs.
4.7 and 7.8; Will (1993), sec. 9.1]. In this paper we review the theoretical
derivation of these effects and in particular consider the contributions of the
Earth’s quadrupole and higher multipole fields.
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We first review the derivation of the metric for a rotating body using
the standard LGRT approach (Lense and Thirring, 1918; Misner et al., 1973;
Ohanian and Ruffini, 1994, secs. 4.7 and 7.8). The metric is characterized
by a Newtonian scalar potential (the gravitoelectric field) and a vector poten-
tial (the gravitomagnetic field) (Ohanian and Ruffini, 1994, sec. 3.5). We
then obtain the same result with a simple transformation argument which
clarifies the physical meaning of the metric (Will, 1993, sec. 4.3). Specifically,
it makes clear that if the metric of a point mass contains fundamental parame-
ters such as the Eddington parameters a and g, then to lowest order the
metric of a rotating body contains no new fundamental parameters (Nordtvedt,
1998). Thus there is no new Lense–Thirring or frame-dragging parameter to
be measured by GP-B or any other experiment.

We then derive the precession equations for a gyroscope in a general
weak field system, that is, for any scalar and vector potential fields (Misner
et al., Wheeler, 1973). The calculation is valid to first order in the fields and
velocities of the source body and the satellite. The gravitational field of the
Earth is described by the scalar and vector potentials, which depend on the
shape of the body and the mass and velocity distribution inside it. We treat
both of these fields by a multipole expansion and express the precessions in
series of spherical harmonics. We do not limit ourselves to the axially symmet-
ric case, which has been thoroughly studied by Teyssandier (1977, 1978). In
particular, we show that for a solid body rotation up to the order l # 2 both
precessions depend only on the tensor of inertia of the Earth.

The major nonspherical contributions to the GP-B precessions are from
the Earth’s quadrupole moment. The contribution to the geodetic precession
which has a magnitude of about 1 part in 103 is detectable by GP-B and
quite important for the determination of the parameter g, which is to be
measured to about 1 part in 105, the most accurate measurement envisioned
(Ohanian and Ruffini, 1994, sec. 3.5 and in particular Table 14.2). This
contribution has been calculated independently by Wilkins (1968) and Barker
and O’Connel (1970), and then in the most elegant and general way by
Breakwell (1988). The contribution to the Lense–Thirring precession is
beyond the expected accuracy of GP-B and close enough to the result by
Teyssandier (1977) obtained from a different Earth model.

We also estimate the influence of Moon and Sun to find that only the
geodetic contribution of the Sun must be included in the GP-B data reduction,
as anticipated.

Since many parts of this paper refer to previously known results, a
brief summary of new and novel features is in order. The derivation of the
Lense–Thirring metric by Lorentz transformation and superposition is the
simplest and most physical analysis of which we are aware; the physical
conclusion is that no independent new Eddington (or PPN) parameter is
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associated with gravitomagnetic effects, which has involved some dispute
(Ciufollini and Wheeler, 1995). The basic equations for the precession are
derived in complete generality in the context of the linearized theory, and
the “small” terms are considered in detail. The multipole expansions are for
general (quasistatic) scalar and vector fields and not limited to axisymmetric
fields; this allows for future analysis of nonaxisymmetric perturbations for
GP-B and astrophysical systems. For the case where only the multipole
moments for e # 2 are important, particularly simple precession results are
given in terms of the inertia tensor; this allows extension of the classic
Lense–Thirring formula to a spherical body with any density distribution,
or to a symmetric top rotating about its symmetry axis. Using two rather
general models of the Earth, we illustrate how the vector potential field may
be constructed from the known scalar potential using our general relations.
Finally, the oblateness correction to the Lense–Thirring precession confirms
the result of Teyssandier that it is small enough that it does not need to be
included in the GP-B analysis.

2. THE METRIC IN LINEARIZED GENERAL RELATIVITY
THEORY

We first briefly review this standard derivation of linearized general
relativity theory. The metric of a rotating body such as the Earth is obtained
by introducing a small perturbation of the Lorentz metric hmn, that is,

gmn 5 hmn 1 hmn (1)

The perturbation hmn is assumed to be expressed in isotropic space coordinates
so that h11 5 h22 5 h33 5 hs. Similarly, we suppose the matter producing
the metric field is described by the energy-momentum tensor of slow-moving
and low-density matter with negligible pressure,

Tmn 5 rumun (2)

where um is the 4-velocity and r is the matter density. The field equations are

Gmn 5 8pGTmn (3)

where Gmn is the Einstein tensor.
The calculation of Gmn and Tmn to the lowest order in the perturbation

is straightforward and results in the following equations:

D2 1hmn 2
1
2

hhmn2 5 16pGTmn, h [ hs
s, D2 [

2

t2 2 ¹2 (4)

hmn
.n 5 0 (5)
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Here indices are raised and lowered with the Lorentz metric, which is consis-
tent to lowest order, and the vertical bar denotes differentiation. The last
expression imposes the so-called Lorentz condition, which can always be
achieved by a coordinate transformation (to lowest order) and involves no
loss of generality; it is also the analog of a gauge choice in electromagnetism.
Because we have used isotropic coordinates, equation (4) leads immediately
to h00 5 hs , and the standard classical correspondence gives h00 5 hs 5 2F.
We thereby obtain the wave equations for the scalar and vector potentials:

D2F 5 24pGr (6)

D2 ›
h 5 16pGr

›
v ,

›
h 5 {h01, h02, h03} (7)

where
›

v is the velocity of the source. These equations may be solved in the
standard way by means of a retarded Green’s function. In the case of a time-
independent system, or a system which changes so slowly that retardation
effects may be ignored, the solution is

F(
›
r ) 5 2G # r(

›
r 8) d 3 ›

r 8

.
›
r 2

›
r 8.

(8)

›
h (

›
r ) 5 4G # r(

›
r 8)

›
v (

›
r 8) d 3 ›

r 8

.
›
r 2

›
r .

(9)

Note that these expressions are analogs of the equations of electrostatics
and magnetostatics, which is why one may speak about gravitoelectric and
gravitomagnetic effects in the linearized theory.

In summary, we may write the (Lense–Thirring) line element as

ds2 5 (1 1 2F) dt2 2 (1 2 2F) d
›
r 2 1 2

›
h ? d

›
r dt (10)

This is valid to first order in field intensity and source velocity, and will
serve as a basis for calculating the gyroscope precession. Figure 1 shows the
general aspects of the scalar and vector fields of a spinning body; the vector
field generally points in the same direction as the velocity of the surface of
the body.

3. THE METRIC WITH PARAMETERS: DERIVATION BY
FRAME TRANSFORMATION

It is, in fact, possible to obtain the above result from a different and
physically interesting perspective, and moreover introduce parameters conve-
nient for discussing experimental measurements. Following Eddington, con-
sider the metric of a massive point with a geometric mass m at a large distance
r, so that m/r ¿ 1. We expand the Schwarzschild solution in isotropic
coordinates for this situation as
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Fig. 1. (a) The scalar field contours and the flow lines of the vector field. (b) The gradient of
the scalar field and the curl of the vector field.

ds2 5
(1 2 m/2r)2

(1 1 m/2r)2 dt2 2 11 2
m
2r2

4

d
›
r 2

5 11 2
2m
r

1
2m2

r 2 1 . . .2 dt2 2 11 1
2m
r

1
3m2

r 2 1 . . .2 d
›
r 2

Eddington suggested that this be written in terms of parameters as

ds2 5 11 2 a
2m
r

1 b
2m2

r 2 1 . . .2 dt2 2 11 1 g
2m
r

1 . . .2 d
›
r 2 (11)

where a, b, and g are equal to 1 for general relativity. The power series (11)
is clearly a rather general form for the metric far from a spherical body.

Since the parameter m which appears in the metric is a constant of
integration representing the mass of the central body (specifically m 5 GM/
c2), we may absorb the parameter a into it, which is equivalent to taking
a [ 1. This is consistent as long as no independent nongravitational determi-
nation of the mass of the body is considered. We will nevertheless retain a
in our calculations as a book-keeping device.

Indeed, the parameters in (11) may all be viewed as a tool for tracking
which terms in the metric contribute to a gravitational phenomenon such as
the perihelion shift of Mercury or the deflection of starlight by the Sun.
Alternatively they may be viewed as numbers which may not be equal to 1
if a metric theory other than general relativity is actually valid. In either case
they provide a convenient way to express the results of experimental tests
of gravity as giving value to the parameters. This parametrized approach has
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been extended to include many other parameters and has been highly devel-
oped under the name “parametrized post-Newtonian theory,” or PPN (Will,
1993). In this paper we take the viewpoint that general relativity is to be
tested and emphasize that we are not using the more general PPN approach.
Solar system measurements give b 2 1 5 (0.2 6 1.0) 3 1023 and g 2
1 5 (21.2 6 1.6) 3 1023, which are of course entirely consistent with
general relativity.

We consider now only phenomena in which the quadratic term, ,m2/
r 2, in g00 is unimportant, that is, in which we may ignore b and assume that
the underlying gravitational theory is linear. Then for a stationary mass,

ds2 5 11 2 a
2m
r 2 dt2 2 (1 1 g

2m
r 2 d

›
r 2

(stationary point mass) (12)

Since this is nearly the Lorentz metric, we may generalize it to a moving
mass point by simply transforming to a moving system using a transformation
that is Lorentzian to the first order in velocity:

tr 5 t 2 vx, xr 5 x 2 vt

Here the subscript r labels the system in which the mass is at rest, and
which moves at velocity v in the x direction in the laboratory system. This
transformation gives the metric for the moving mass point as

ds2 5 11 2 a
2m
r 2 dt2 2 11 1 g

2m
r 2 d

›
r 2 1 (a 1 g)

4m
r

v dx dt

(point mass moving in x direction)

This obviously generalizes for motion in any direction to

ds2 5 11 2 a
2m
r 2 dt2 2 11 1 g

2m
r 2 d

›
r 2 1 (a 1 g)

4m
r

(
›

v ? d
›
r ) dt

(moving point mass) (13)

As we assume that our theory is linear to this order (like general relativity),
we can superpose the fields of a distribution of such point masses and replace
m/r by F(

›
r ) from (8) and 4m

›
v /r by

›
h (

›
r ) from (9), resulting in

F(
›
r ) 5 2G # r(

›
r 8)d 3 ›

r 8

.
›
r 2

›
r .

›
h (

›
r ) 5 4G # r(

›
r 8)

›
v (r8) d 3 ›

r 8

.
›
r 2

›
r 8.
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ds2 5 (1 1 2aF) dt2 2 (1 2 2gF) d
›
r 2 1 (a 1 g)(

›
h ? d

›
r ) dt (14)

This agrees with the general relativity result (10) when a 5 g 5 1, but now
contains appropriate combinations of Eddington parameters.

We emphasize that this line element has been obtained for any slowly
moving mass distribution from the parametrized metric for a stationary mass
point by transformation and superposition, and thus no new parameter appears
in the expression. Therefore a measurement of a phenomenon which depends
on the cross term in (14) provides a value for a 1 g and not for some new
parameter associated with gravitomagnetism (Cuifollini and Wheeler, 1995;
Nordtvedt, 1968, 1988a, b, 1998; Adler and Silbergleit, 1998; Adler, 1999).

Note also that the result is rather strong since it depends on the observa-
tionally verified Schwarzschild metric (12), the well-tested Lorenz transfor-
mation, and the principle of superposition, valid for any linear theory.

4. GENERAL PRECESSION RELATIONS

An orbiting gyroscope has its spin axis parallel-displaced in accord with
the metric (14). We calculate this motion with minimal assumptions about
the potentials, which could be the potentials of a nearly spherical and rather
uniform rigid body such as the Earth or a potato-shaped body such as in Fig.
1, with some interior mass distribution. We will work always to the first
order in the potentials and in the velocities

›
v and

›
V of the source and orbiting

gyroscope. The parallel displacement equation for the gyro spin Sm is (Misner
et al., 1973; Ohanian and Ruffini, 1994, secs. 4.7 and 7.8; Will, 1993, sec. 9.1)

dSm

ds
1 H m

nsJ Sn dxs

ds
5 0 (15)

We suppose that the gyro spin 4-vector is perpendicular to the velocity 4-
vector, which is equivalent to assuming that the gyro spin has no zero
component in its rest frame. From this assumption the zero component in
another frame is easily obtained, and to first order in the satellite velocity it
is given by S 0 5

›
S ?

›
V . We calculate the Euler–Lagrange equations in the

standard way, and then put them into canonical form to give the Christoffel
symbols. To lowest order in the potentials and velocity the Christoffel sym-
bols are

H0
0lJ 5 aF.l, H i

00J 5 aF.i, H i
iiJ 5 2gF.i

H i
ilJ 5 2gF.l, H i

llJ 5 gF.i, H i
0lJ 5

a 1 g
4

(hl.i 2 hi.l)
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The Roman indices in these expressions are space indices and run from 1 to
3, a vertical bar denotes an ordinary derivative, and l Þ i. Note that the
gravitational vector potential

›
h occurs in a gauge invariant way, that is only

its curl appears.
Substitution of the Christoffel symbols into the spin equation of

motion gives

Ṡi 1 (a 1 g)F.i(SlV l) 2 gSi(F.lV l) 2 gV i(F.lSl)

1
a 1 g

4
(hl.i 2 hi.l)Sl 5 0 (16)

We break the drift rate into two parts, the geodetic drift rate due to the scalar
potential F, and the Lense–Thirring precession rate due to the vector potential
›

h . Separating also symmetric and antisymmetric parts of the geodetic effect,
we arrive at, in a 3-dimensional vector notation,

›
Ṡ LT 5

›
VLT 3

›
S ,

›
VLT [ 1a 1 g

4 2¹ 3
›

h (17)

and

›
Ṡ G 5

›
VG 3

›
S 1 H2

a
2

[(
›

S ?
›

V )¹F 1 (
›

S ? ¹F)
›

V ] 1 g(
›

V ? ¹F)
›

SJ
›

VG [ 1a 1 2g
2 2¹F 3

›
V (18)

›
Ṡ 5

›
Ṡ G 1

›
Ṡ LT (19)

where
›

VLT and
›

VG are the instantaneous values of the Lense–Thirring and
geodetic precessions, respectively. Since

›
VLT is the curl of the gravitational

vector potential the Lense–Thirring precession rate is the analog of the
magnetic field in magnetostatics theory. The geodetic effect is of the order
of the scalar potential times the orbital velocity of the satellite, while the
Lense–Thirring terms are of the order the scalar potential times the velocity
of the central body (the Earth), which is typically much smaller than the
orbital velocity. Symmetric geodetic terms are responsible for stretching the
spin vector

›
S , and the reason for separating them is that their effect almost

vanishes when averaged over any reasonable satellite orbit. To see this,
consider the last term in the symmetric part of the geodetic drift rate. Using
Newton’s law in the form ¹F 5 2

›
V̇ , we may write
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^(¹F ?
›

V )&
›

S 5 2 K1d
›

V
dt

?
›

V2L ›
S 5 2K1

2
d

›
V 2

dt L ›
S 5 2

D
›

V 2

2T
›

S

where D
›

V 2 is the change in the velocity squared in total time T, and it is
assumed that the drift rate is small and

›
S does not change significantly during

this period of time. If the orbit is periodic, this quantity will be zero, and
for a nearly periodic orbit it will be very small. Similarly for the remaining
symmetric terms in the geodetic drift we may write

^(
›

S ?
›

V ) ¹F 1 (
›

S ? ¹F)
›

V & 5 2K(
›

S ?
›

V )
d

›
V

dt
1 1 ›

S ?
d

›
V

dt 2 ›
VL

5 2KV i dV l

dt
1 V l dV i

dt LSl

5 2KdV iV l

dt LSl 5 2
DV iV l

T
Sl

Again, this is zero for a periodic orbit and very small for a nearly periodic orbit.
In summary, the average precession rate of the gyro spin is

^
›

Ṡ & 5 ^
›

Ṡ G& 1 ^
›

Ṡ LT&, ^
›

Ṡ G& 5 ^
›

VG& 3
›

S , ^
›

Ṡ LT& 5 ^
›

VLT& 3
›

S (20)

with the values of the geodetic and precessions given in (17) and (18).
Note that the geodetic and Lense–Thirring effects are approximately

perpendicular to each other for an approximately polar orbit around a central
body of reasonable shape; for a circular polar orbit about a spherical body
they are perpendicular. Figure 2 shows the orientation of the various vectors
for a fairly general situation, a satellite in a roughly planar polar orbit about
an oddly shaped body. The geodetic precession vector

›
VG is roughly perpen-

dicular to the orbit plane and the Lense–Thirring precession vector
›

VLT has
the general appearance of a dipole magnetic field.

5. EFFECT OF DISTANT MASSES

If there are relatively distant masses, such as the Moon, in the neighbor-
hood of the central body, their density distribution rD(

›
r ) may be expressed as

rD(
›
r ) 5 o

n
Mn d(

›
r 2

›
r n)

The effect on the scalar and vector potentials is

FD(
›
r ) 5 2o

n

GMn

.
›
r 2

›
r n.

,
›

h D(
›
r ) 5 4 o

n

GMn
›

v n

.
›
r 2

›
r n.

It then follows that the precessions due to these distant masses are
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Fig. 2. (a) The satellite is in a roughly planar polar orbit, and the geodetic precession vector
is perpendicular to the orbit. (b) The orientation of the vectors relevant to the Lense–Thirring
precession: the precession vector field has the appearance of a dipole magnetic field.

›
VD

G 5 2
a 1 2g

2 o
n

GMn(
›
r 2

›
r n) 3

›
V

.
›
r 2

›
r n.3

,
›

VD
LT 5 2(a 1 g) o

n

G
›

L n

.
›
r 2

›
r n.3

(21)

where
›

L n 5 Mn(
›
r 2

›
r n) 3

›
v n is the angular momentum of the distant mass.

For the specific case of the Moon and the GP-B experiment the numerical
values will be discussed in Section 9.

6. MULTIPOLE EXPANSIONS

We will henceforth study the case of a body such as the Earth which is
rigidly rotating, that is,

›
v 5

›
v 3

›
r . Motivated by expression (9), we introduce

a new vector potential quantity
›

P (
›
r ):

›
h (

›
r ) 5 4

›
v 3

›
P (

›
r ),

›
P (

›
r ) 5 G # r(

›
r 8)

›
r 8 d 3 ›

r 8

.
›
r 2

›
r 8.

(22)

The vector
›

P (
›
r ) is a harmonic function outside the body which we will

expand in spherical harmonics; for a special spherically symmetric case›
P (

›
r ) is collinear with

›
r . In terms of

›
P (

›
r ), the metric (14) may be written as

ds2 5 (1 1 2aF) dt2 2 (1 2 2gF) d
›
r 2 1 4(a 1 g) (

›
v 3

›
P ) ? d

›
r dt (23)

Using (8) and (9), it is possible to express the divergence of
›

P (
›
r ) via

the scalar potential, namely,
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¹ ?
›

P 5 2(F 1
›
r ? ¹F)

which allows us to rewrite formula (17) for the Lense–Thirring precession as
›

VLT 5 2(a 1 g) [(
›

v ? ¹)
›

P 1
›

v (F 1
›
r ? ¹F)]

›
VLT

5 2(a 1 g)v [
›

P .z 1 (F 1 rF.r)]ẑ (24)

Here we have chosen the z axis to be along the spin,
›

v 5 vẑ.
We now put the origin of spherical coordinates {r, u, w} at the center

of mass of the body, introduce spherical harmonics with the notation

Y n
lm(u, w) 5 Pm

l (cos u) f n(mw), f n(mw)5 Hcos mw, n 5 c
sin mw, n 5 s

(25)

and expand the potentials F and
›

P in corresponding series:

F(
›
r , t) 5 2

GM
r F1 1 o

l$2,m,n
an

lm(t)1R
r2

l

Y n
lm(u, w)G (26)

Pi(
›
r , t) 5

GMR
r F o

i$1,m,n
pin

lm(t)1R
r2

l

Y n
lm(u, w)G (27)

[l 5 1 terms in (26) and l 5 0 terms in (27) are missing because the origin
is at the center of mass of the body; see expressions (28) and (29) below].
These expansions are in the inertial frame in which the body rotates; the
direction of the coordinate polar axis z is so far arbitrary; R is the characteristic
size of the body, which we take to be the equatorial radius for the Earth.
The potentials are slowly varying functions of time due to the Earth rotation,
so we write the coefficients as explicit functions of time. These coefficients
are related to the mass distribution in the standard way by

an
lm(t) 5

(2 2 dm0)

M
(l 2 m)!
(l 1 m)! # r(

›
r , t) 1r

R2
l

Y n
lm(u, w) d 3 ›

r (28)

pin
lm(t) 5

(2 2 dm0)

M
(l 2 m)!
(l 1 m)! # r(

›
r , t)1r

R2
l
xi

R
Y n

lm(u, w) d 3 ›
r (29)

Note that generally the domain of integration here is also time dependent.
In particular, we write for convenience ac

l0(t) [ al0(t), as
l0(t) [ 0, pic

l0(t) [
pi

l0(t), pis
l0(t) [ 0.

The time dependence in (28) and (29) may be easily analyzed for a
rigidly rotating body provided that the rotation axis is fixed both in the inertial
space and in the body. In that case in the inertial frame with the z axis along
the spin,

›
v 5 v ẑ, the Earth density is
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r(
›
r , t) 5 re(r, u, w 2 vt) [ re(r, u, w)

where re(r, u, w) [ re(
›
r ) is the time-independent density measured in the

frame rotating with the Earth. Substituting this for the density in (28) and (29)
and transforming to the Earth-fixed frame, we find that the time-dependent
coefficients may be written in terms of constant moments of density
according to

Fac
lm(t)

as
lm(t)G 5 ZZcos vt 2sin vt

sin vt cos vt ZZ Fac
lm

as
lm
G (30)

Fpic
lm(t)

pis
lm(t)G 5 ZZcos vt 2sin vt

sin vt cos vt ZZ Fpic
lm

pis
lm
G (31)

and the time-independent coefficients are explicitly given by

an
lm 5 an

lm(0) 5
(2 2 dm0)

M
(l 2 m)!
(l 1 m)! # re(

›
r )1r

R2
l

Y n
lm(u, w) d 3 ›

r (32)

pin
lm 5 pin

lm(0) 5
(2 2 dm0)

M
(l 2 m)!
(l 1 m)! # re(

›
r )1r

R2
l
xi

R
Y n

lm(u, w) d 3 ›
r (33)

If the rotation axis wanders in the body and/or in the inertial space, the
relation between the time-dependent and time-independent coefficients is
given by a combination of appropriate rotation matrices which is more compli-
cated than the one matrix in (30) and (31) (Rose, 1957). Generally, a time-
dependent coefficient with the indices l and m is a linear combination of the
appropriate time-independent coefficients with the indices l and n 5 0, 1,
. . . , l.

Introducing now the time-dependent coefficients from (32) and (33)
back into (26) and (27), we obtain the time-dependent potentials in a conve-
nient form using time-independent coefficients only:

F(
›
r , t) 5 2

GM
r F1 1 o

l$2,m,n
an

lm1R
r2

l

Y n
lm(u, w 2 vt)G (34)

Pi (
›
r , t) 5

GMR
r F o

l$1,m,n
pin

lm1R
r2

l

Y n
lm(u, w 2 vt)G (35)

This is of course what one should expect intuitively; in general this form
will be most useful for our purposes.

The constant coefficients an
lm in (34) are those that are measured very

accurately for the Earth [up to l 5 18, their values are found in World
Geodetic System 1984 (1987)]. However, for the Earth of arbitrary shape and
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composition it is impossible to express pin
lm through an

lm; in other words, their
values, and hence the scalar and vector potentials, are independent. Neverthe-
less, a useful relationship between the two sets of coefficients exists; to
describe it, we need a notation for a general moment of the density,

M n
klm [ # r(

›
r )1r

R2
k

Y n
lm(u, w) d 3 ›

r (36)

In particular,

an
lm 5

(2 2 dm0)

M
(l 2 m)!
(l 1 m)!

M n
llm (37)

Using the definitions (32) and (33) and the recurrence relations for Legendre
functions (Bateman and Erdélyi, 1953), we derive the following equalities
relating pin

lm to an
lm:

p1n
lm 5 (2l 1 1)21{2221(l 1 m 1 1)(l 1 m 1 2)an

l11m11

1 (2 2 dm1)21an
l11m21 1 [(l 2 m)!/M(l 1 m)!]

[M n
l11l21m11 2 (l 1 m 2 1)(l 1 m)M n

l11l21m21]}

p2n
lm 5 (7)(2l 1 1)21{221(l 1 m 1 1)(l 1 m 1 2)am

l11m11 (38)

1 (2 2 dm1)21am
l11m21 2 [(l 2 m)!/M(l 1 m)!]

[Mm
l11l21m11 2 (l 1 m 2 1)(l 1 m)Mm

l11l21m21]}

p3n
lm 5 (2l 1 1)21{(l 1 m 1 1)an

l11m11

1 (2 2 dm0)(l 2 m)!M n
l11l21m /M(l 1 m 2 1)!}

In the second line of (38), the minus sign is taken and m 5 s when n 5 c,
the plus sign and m 5 c when n 5 s.

From (34) and (35), using the definition (17) of
›

VLT, we can compute
a rather compact multipole expansion for the Lense–Thirring precession,

Vi
LT(

›
r , t) 5

a 1 g
2

GMv
r o

l$2,m,n
[(l 2 m)pin

l2di3m

2 lan
lmdi3]1R

r2
l

Y n
lm(u, w 2 vt) (39)

The corresponding expansion for the geodetic precession is too cumbersome
to be useful.
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7. THE FAR-FIELD/HIGH-SYMMETRY APPROXIMATION:
MULTIPOLES WITH l # 2 AND THE TENSOR OF
INERTIA

If the shape of the central body and the mass distribution inside it
are known, then all the pertinent quantities, including multipole expansion
coefficients an

lm and pin
lm, may be found by integration, but this is rarely the

case. Even when an
lm are measured, as for the Earth, all the pin

lm, and the
Lense–Thirring effect with them, remain entirely undetermined. However,
for a body of any shape and composition, the coefficients an

2m (l 5 2) and
pin

1m (l 5 1) can be expressed in terms of the elements Iij of the tensor of
inertia I determined in a standard way,

Iij 5 # r(
›
r )(r 2 dij 2 xi xj) d 3 ›

r

Writing Iii [ Ii , we find

a20 5 2
2I3 2 I2 2 I1

2MR2 , ac
22 5

I2 2 I1

4MR2 , p3
10 5 2

I3 2 I2 2 I1

2MR2

p1c
11 5 2

I3 1 I2 2 I1

2MR2 , p2s
11 5 2

I3 2 I2 1 I1

2MR2 (40)

ac
21 5 2p1

10 5 p3c
11 5

I13

MR2 , as
21 5 2p2

10 5 p3s
11 5

I23

MR2

2as
22 5 0.5 p1s

11 5 0.5 p2c
11 5

I12

MR2

This is done by comparing the integrals (32) (with l 5 2) and (33) (with l 5
1) to Iij using explicit expressions of Legendre functions with l 5 1, 2;
formulas for a20 and ac

22 are known and used in geodesy for the determination
of the Earth’s moments of inertia (Bursa, 1992).

Introducing (40) into (34), (35) and dropping the terms with l . 2 for
F and l . 1 for

›
P , we first obtain the l # 2 formulas for the potentials:

F(
›
r ) 5 2

G
r FM 1

1
2r 2 1tr I 2

3
r 2 (I

›
r ?

›
r )2G,

(41)

›
P (

›
r ) 5 2

G
r 3 FI

›
r 2

1
2

(tr I )
›
rG

From these we then obtain the approximation for the precessions by differenti-
ation of the expressions (18) and (17) [see also (22)]:
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›
VG 5

(a 1 2g)G
2r 3 HFM 1

3
2r 2 1tr I 2

5
r 2 (I

›
r ?

›
r )2G(

›
r 3

›
V )

1
3
r 2 (I

›
r 3

›
V )J (42)

›
VLT 5

(a 1 g)G
r 3 HI

›
v 2 3 F1

2
(tr I ) 2

1
r 2 (I

›
r ?

›
r )G ›

v

1 3
›

v ?
›
r

r 2 F1
2

(tr I )
›
r 2 I

›
rGJ (43)

[Of course, the same expression for
›

VLT is also obtained from (40) and (39)
with l 5 2.]

Note that formulas (40) and (41) hold in both the body-fixed and inertial
frames, and the coefficients and moments of inertia in the latter depend on
the time if the rotation is not axisymmetric, an

lm 5 an
lm(t), pin

lm 5 pin
lm(t), Iij 5

Iij(t). The expressions (42) and (43) for the precessions are meaningful in
the inertial frame, where generally I 5 I(t) 5 R(t)I(0)RT(t), R(t) being a
rotation matrix which converts the body-fixed radius vector into the inertial
one. In the above case of a simple rotation about an inertially fixed axis,

›
v 5 vẑ,

R(t) 5 ))
cos vt 2sin vt 0
sin vt cos vt 0

0 0 1))
The results (41)–(43) are valid under either of the two conditions (1)

far field, R/r ¿ 1; (2) high symmetry, i.e., all higher order moments are
small. These results alter somewhat our usual notion of the geodetic and
Lense–Thirring effects: the first one is generally proportional not only to the
orbital momentum, but to I

›
r 3

›
V as well, and the Lense–Thirring precession

generally points not only in the direction of the angular momentum
›

L 5
I

›
v , but has also components parallel to

›
v ,

›
r , and I

›
r . Two particular cases

of the inertia tensor are of special interest.

(a) Spherical Symmetry, I 5 diag{I, I, I}. In this case, the standard
formulas follow immediately from (43) for a 5 g 5 1:

›
VG 5

3GM
2r 3 (

›
r 3

›
V ),

›
VLT 5

2GI
r 3 F2

›
v 1

3
r 2 (

›
v ?

›
r )

›
rG (44)

Note that we have thus shown this to be the exact result for a spherical Earth
with any radial density distribution r 5 r(r).
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(b) Symmetric Top, I 5 diag{I1, I1, I}, I1 Þ I. It turns out that for
›

v 5 vẑ, i.e., for the rotation about the material symmetry axis, the previous
expression for VLT remains true; to lowest order in the oblateness, this also
proves to be the exact result for a slightly oblate uniform ellipsoid of revolution
rotating about its semiminor axis. The corresponding expression for VG is
given and discussed in Section 9.

8. EARTH MODELS

To go beyond the l # 2 approximation, one must make some assumptions
about the shape of the central body and density distribution inside it, and
use the data of gravitational potential measurements, as available. Bearing
in mind the application to GP-B, that is, the Earth, we use the following set
of assumptions.

1. Gravitational Potential. We assume it to be measured, i.e., the gravita-
tional coefficients an

m known. Our problem is thus to determine the vector
potential in terms of the coefficients pin

lm using as general an Earth model
as possible.

2. Shape. We assume that the Earth is a slightly oblate ellipsoid of
revolution, so its surface equation to lowest order in the eccentricity e is

r 5 rs(u, w) 5 R(1 2 e cos2u) (45)

where R is the semimajor axis (equatorial radius); the eccentricity is the ratio
of the difference of the semiaxes to the major one.

3. Mass Distribution. We examine two different models:
(a) With r0 . 0 and Dr being arbitrary functions of their arguments,

we set

r(
›
r ) 5 r0(r) 1 Dr(u, w) . 0, #

sphere

Dr(u, w) sin u du dw 5 0 (46)

The first term here describes any depth variation of the average density, and
the only assumption is that the angular variations are depth independent.

(b) For arbitrary functions r0 . 0 and rs , we set

r(
›
r ) 5 r0(r) 1 rs(u, w) d(r 2 rs(u, w)) . 0 (47)

Contrary to the previous model, here all angular variations of the density are
concentrated at the earth’s surface.
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We will call model A the set of assumptions 1, 2, and 3(a), and model
B the assumptions 1, 2, and 3(b); in both cases the mass distributions are,
of course, assumed consistent with the gravitational data of the assumption 1.

As far as the Earth is concerned, assumption 2 reflects the classical
Clairaut formula (Roy, 1988) (the eccentricity is e ' 3.353 3 1023); also,
the mass model 3(b) seems rather realistic for the Earth since the estimated
thickness of the layer where its mass distribution varies significantly in the
angular directions is only about 30 km.

Note that an entirely different Earth model is used in geodesy: it assumes
that the sum of gravitational and centrifugal potentials is constant at the
Earth ellipsoid’s surface Kaula (1966). This allows one to relate al0 to the
eccentricity and the Earth angular velocity only (in particular, to obtain the
Earth’s gravitational oblateness J2 5 2a20 with a surprisingly good accuracy),
but gives zero values to an

lm, m Þ 0, and leaves pin
lm undetermined.

Evidently, our two models should give bounds for the corrections to the
l $ 2 values of the precessions. Moreover, for both of them it is possible to
find the corrections explicitly by means of the following four steps:

1. Calculate an
lm by (32) via spherical harmonics coefficients rn

lm of the
function Dr(u, w) for model A [or rs(u, w) for model B].

2. Since an
lm are assumed known, solve the resulting equations for rn

lm,
hence having them expressed via an

lm (thus Dr or rs are uniquely determined
at this stage through the gravitational data).

3. Using that, calculate the needed moments M n
l11l21m of the density by

(36) in terms of an
lm.

4. Using the found values of M n
l11l21m, express pin

lm through an
lm according

to (38).

In fact, what is described here is a fit of our density distributions (46)
and (47) to the known gravitational coefficients an

lm, which allows us, in these
two cases, to express the former through the latter and thus determine uniquely
the coefficients pin

lm, i.e., the gravitomagnetic part of the field. The implementa-
tion of this procedure is rather cumbersome, though basically straightforward,
so the details are given in the Appendix. The results of the calculations to
lowest order in the Earth’s eccentricity are

p1n
lm 5

1
2(2l 1 1) F2(l 1 m 1 1)(l 1 m 1 2) an

l11m11 1 (l 2 m)

3 (l 2 m 2 1)klan
l21m11 1

2
2 2 dm1

(an
l11m21 2 klan

l21m21)G
1 O((el)2)
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p2n
lm 5

(7)
2(2l 1 1) F(l 1 m 1 1)(l 1 m 1 2)am

l11m11 1 (l 2 m)

3 (l 2 m 2 1)klam
l21m11 2

2
2 2 dm1

(am
l11m21 1 klam

l21m21)]

1 O((el)2)

p3n
lm 5

1
2l 1 1

[(l 1 m 1 1)an
l11m 1 (l 2 m)klan

l21m] 1 O((el)2) (48)

with the minus sign and m 5 s for n 5 c, the plus sign and m 5 c for n 5
s in the second of these formulas, and

kl 5
l 1 2
l 1 4

(model A), kl 5 1 (model B)

It is remarkable that the first nonzero oblateness correction is quadratic,
and that the results for the two models differ by just a factor (l 1 2)/(l 1
4) in front of a couple of terms. These expressions are needed only for l $
2 since for l 5 1 formulas (40) always hold.

9. RESULTS FOR GRAVITY PROBE B

We now apply the above results to the GP-B satellite which will be
circling the Earth on a low (R/r ' 0.9) polar, nearly circular orbit. Our aim
is to check the GR predictions for the geodetic and Lense–Thirring drift of
a GP-B gyroscope taking into account all the peculiarities of the real Earth’s
gravitoelectric and gravitomagnetic field pertinent to the expected experimen-
tal error of 1 part in 105 for the geodetic effect and about 1 part in 102 for
the Lense–Thirring effect. More precisely, one needs to check whether the
spherically symmetric approximation (44), which has been used for many
years in the theoretical discussion and planning of the experiment, needs any
corrections to match the above experimental accuracy.

We use the GR values for the Eddington parameters a 5 g 5 1 in the
sequel. We always use assumption 2 of the previous section that the Earth
has a shape of a slightly oblate ellipsoid of revolution with the eccentricity
e 5 3.353 3 1023. Its semiminor axis is assumed fixed in the inertial
space and coincident with the Earth rotation axis and the z axis of the
Cartesian coordinates.

1. Gravitational Potential. For the required accuracy, it is enough to
include only the Earth’s quadrupole moment into F, i.e., to set
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2a20 [ J2 ' 1.083 3 1023; an
lm 5 0 for l 5 2, m . 0; l . 2

(49)

This is because all gravitational coefficients other than the Earth’s oblateness
J2 are at least 2 orders of magnitude smaller (World Geodetic System 1984,
1987). By (49) and (40), the l # 2 expression (40) for F is valid with

I 5 diag{I1, I1, I}, I1 5 I 2 J2MR2 (50)

which gives the gravitational potential in the usual form:

F(
›
r ) 5 2

GM
r F1 2 J2

R2

2r 2 13
z2

r 2 2 12G 5 2
GM

r F1 2 J2
R2

r 2 P2(cos u)G
2. Instantaneous Geodetic Precession. Just as for the potential, (49)

assures that the l # 2 formula (42) is valid for VG. The explicit form of the
geodetic precession is obtained either from (42) and (50) or from its general
definition (18) by differentiating the above expression for the potential. The
result reads

›
VG 5

3GM
2r 3 H(

›
r 3

›
V ) 1 J2

3
2 1R

r2
2

3 F11 2 5
z2

r 22(
›
r 3

›
V ) 1 2z(ẑ 3

›
V )GJ (51)

This expression contains the J2 corrections to the classical spherically symmet-
ric expression (44). Breakwell (1988) obtained it, but in a different form,
pinning the value of the precession to a point on a given satellite orbit rather
than to a given point in space through which the spinning particle passes
with a velocity

›
V .

3. Gravitomagnetic Field and the Instantaneous Lense–Thirring Preces-
sion. We now invoke our assumption about the mass distribution (models A
and B of the previous section) and substitute the values (49) of the gravitational
coefficients into the expressions (48) for pin

lm. In this way it turns out that for
both models A and B the only nonzero coefficients additional to l 5 1 are
those with l 5 3, m 5 0, 1, and their values are

p1c
31 5 p2s

31 5
5
49

J2, p3
30 5 2

15
49

J2 (model A)

p1c
31 5 p2s

31 5
1
7

J2, p3
30 5 2

3
7

J2 (model B) (52)
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So, for both our models the only addition to the field of a symmetric top is
the gravitomagnetic field (52). In terms of the Lense–Thirring precession
that means that the standard expression (44) has to be appended by the terms
(52) from the general formula (39) for the precession. The result reads

›
VLT 5

GIv
r 3 F13

z2

r 2 2 12ẑ 1 3
z
r

xx̂ 1 yŷ
r G

2 J2
GMR2v

r 3

R
r FZ1z2

r 22 R
r

ẑ 1 X1z2

r 22 xx̂ 1 yŷ
r G (53)

where (recall z2/r 2 5 cos2u)

Z(cos2u) 5 Z0(35 cos4u 2 30 cos2u 1 3), X(cos2u) 5 X0(5 cos2u 2 1)

Z0 5
15
98

, X0 5
15
49

(model A); (54)

Z0 5
3
14

, X0 5
3
7

(model B)

The second line of (53) is the correction to the classical Lense–Thirring
expression in the first line which is induced by the gravitomagnetic field
(52). [Recall from Section 7, case (b), that the dependence of

›
VLT on J2 for

a symmetric top rotating about its symmetry axis cancels out—remarkably!
Thus the first line of (53) contains no J2.]

Note that the only difference between the Earth models A and B is a
factor of 7/5 in the constants Z0 and X0.

Note also that allowing for more multipoles in the gravitational potential
than given in equation (49) automatically yields higher order multipoles in
the gravitomagnetic field by the expressions (48) for pin

lm. However, for GP-
B all these higher order corrections prove to be too small to be taken into
account.

4. Orbit of the GP-B Satellite and the Instantaneous Values of Preces-
sions. The perfect orbit for the GP-B satellite would be a circular polar one
with the altitude hs 5 650 km, which is described by r 5 r0 5 R 1 hs , V 5
V0 5 !GM/r0. In reality it is slightly distorted by the quadrupole moment
of the Earth’s gravitational field; with the lowest order in J2 corrections
included, the orbit becomes (Breakwell, 1987; Barker and O’Connel, 1970)
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r 5 r0F1 2
1
4

J21 R
r0
2

2

cos 2uG
(55)

›
V 5 V0F1 2

3
8

J21R
r0
2

2GFû 1
1
2

J21R
r0
2

2

sin 2ur̂G
where r̂, û, ŵ are the corresponding unit vectors. (In view of the orbit
symmetry, it is enough to consider a half-orbit from one pole to the other,
0 # u # p; otherwise, the second half may be assigned to p # u # 2p,
with the proper direction of the unit vector êu.)

Introducing the orbital velocity (55) into the formula (51) and dropping
some terms O(J2

2), we obtain the geodetic precession for the GP-B gyroscope
in the following form:

›
VG 5

3GMV0

2r 2 F1 2
3
8

J21R
r0
2

2GF1 1
3
2

J21R
r0
2

2

(1 2 3 cos2u)Gêw

Using now the orbit radius (55) and keeping only the corrections linear in
J2, we arrive at the expression we need:

›
VG 5

3GMV0

2r 2
0

F1 1 J21R
r0
2

2

15
8

2
7
2

cos2u2Gêw (56)

To derive a similar formula for
›

VLT from (53), we of course need no
orbital velocity, but only the orbit radius (55); with accuracy O(J2) the instanta-
neous value of the Lense–Thirring precession for GP-B turns out to be

›
VLT 5

›
V (0)

LT 1
›

V (J2)
LT

›
V (0)

LT 5
GIv
r 3

0
[(3 cos2u 2 1)ẑ 1 (3 cos u sin u)x̂ ] (57)

›
V (J2)

LT 5 J2
GIv
r 3

0
F1R

r0
2

2

1U 2 Z
MR2

I 2ẑ 1 1V
R
r0

cos u 2 X
MR2

I 2 sin ux̂G
For convenience, we have assumed that the orbit is in the plane y 5 0; the
values of Z 5 Z (cos2 u) and X 5 X(cos2u) are given in (54), while

U(cos2u) 5
3
4

(6 cos4u 2 5 cos2u 1 1), V(cos2u) 5
9
4

(2 cos2u 2 1)

(58)

Note that the expressions (56) and (57) contain the corrections coming
both directly from the non-spherically symmetric gravitoelectric and gravito-
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magnetic field and also through the influence of the former on the orbit. The
first contribution can be distinguished from the second in the Lense–Thirring
precession (57) by the presence of the factor MR2/I; however, in the geodetic
precession (56) this difference is concealed.

5. Orbit-Averaged Precessions: the GP-B Drift Rates. With the above
results, it is now straightforward to carry out the orbit averaging, which
reduces to a simple integration over u. In this way, to lowest order in the
Earth’s oblateness J2 ' 1.083 3 1023, using (56), we find

^
›

VG&, 5
3GMV

2r 2
0
F1 2

9
8

J21R
r0
2

2Gêw 5
3GMV

2r 2
0

[1 2 1.003 3 1023]êw

(59)

where the values R 5 6378 km and r0 5 7028 km for the Earth’s and orbit
radius have been taken. The result exactly coincides with the one found by
Breakwell (1988) in a different way (he gave the formula for the orbit of
any inclination). Since GP-B is intended to measure the geodetic precession
and the Eddington parameter g to about 1 part in 105, a 0.1% correction is
critically important. Note that the GP-B gyro spin axis will be initially aligned
with the reference direction to the guide star in the orbit plane, so the geodetic
effect will cause the in-plane drift of the spin in the north–south direction.

In a similar fashion, from (57) we derive

^
›

VLT& 5
GIv
2r 3

0
F1 1

9
4

J21R
r0
2

2

11
2

2 Z0
MR2

I 2Gẑ (60)

For our model B, Z0 5 3/14 according to (54); therefore, with MR2/I 5 3.024
for the Earth,

^
›

VLT& 5
GIv
2r 3

0
F1 1

9
8

J21R
r0
2

2

11 2
3
7

MR2

I 2Gẑ 5
GIv
2r 3

0
[1 2 2.97 3 1024]ẑ

Thus the J2 correction for model B is (20.03%), which is essentially beyond
the expected GP-B accuracy for the Lense–Thirring effect. For model A the
correction is of the opposite sign and almost one order of magnitude smaller,
about 0.007%. For a different model of the mass distribution inside the Earth,
Teyssandier (1977) obtained a slightly larger correction of about 20.011%,
with the same significance for GP-B.

6. Effect of the Moon. According to formula (21) from Section 5, the
geodetic effect from a distant mass such as the Moon scales with the mass
and inversely with the square of distance. Since the Moon has a small mass
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and is at a large distance, we expect its effect to be small. A rough estimate
for the geodetic precession due to the Moon is

VM
G

^VG&
5

MM

M 1r0

rM
2

2

' 1026 (62)

which is too small to be of significance for the GP-B experiment.
The Lense–Thirring effect scales with the angular momentum and

inversely with the cube of the distance. Since the velocity of the Moon in
its orbit is small, we expect its effect to be small, and the estimate

VM
LT

^VLT&
5

LM

L 1r0

rM
2

3

' 1025 (63)

shows that it is really far beyond the GP-B accuracy. Thus the Moon is of
no consequence for the GP-B experiment.

6. Effect of the Sun. Although the Sun is quite distant, its mass is large
compared to the Earth, so it is not apparent how large its effect on the
precession will be. We can calculate this using (18). In the inertial frame
centered on the Sun the velocity of the satellite will be the sum of the satellite
velocity in the Earth orbit plus the orbital velocity of the Earth,

›
V 5

›
V S 1

›
V EO (64)

But the satellite velocity averages to zero in the course of one orbit, while
the other factors in (18) change very little, so for long time averages we may
neglect the satellite velocity compared to the Earth orbital velocity. Treating
the Sun as a point mass and approximating the Earth orbit as a circle, we
may thus write (18) as

›
V S

G ' 1a 1 2g
2 2 GMSVEO

r 2
S

n̂ (65)

where the unit vector n̂ is perpendicular to the plane of the ecliptic and rS

is the Earth–Sun distance. The numerical value of this, with a 5 g 5 1, is

^VS
G& ' 6.3 3 1027 rad/year 5 19 marcsec/year (66)

This contribution to the GP-B precession is not negligible and must be
included in the data analysis. It was first discussed by deSitter (1916a, b),
and further information and references can be found in the book by Will
(1993). Note an important fact concerning the direction of the above preces-
sion vector: it is perpendicular to the plane of the ecliptic, whereas the
geodetic precession vector due to the Earth lies mainly in the equatorial plane
of the Earth, so the two are not parallel. Indeed, the precession due to the
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Sun is roughly in the direction of the Lense–Thirring precession due to the
Earth. Finally, we may estimate the precession due to the spin of the Sun by
using (44). Since the spin period of the Sun is about 1 month, this gives roughly

^VS
LT& ' 10211 rad/year 5 0.002 marcsec/year (67)

which is far too small to be of relevance to the GP-B experiment.
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APPENDIX

Let us show briefly the implementation of the four-step procedure
described in Section 8, which allows us to obtain expressions (48) for gravito-
magnetic multipole coefficients pin

lm. We do it for the Earth model A; calcula-
tions for model B are similar.

First, we introduce the model A density distribution (46) into the defini-
tion (36) of the general moment M n

klm of the density and calculate this moment
for the shape of a slightly oblate ellipsoid of revolution (assumption 2 of
Section 8). Working to the first order in the eccentricity e, we find M n

klm in
terms of the spherical harmonics coefficients

rn
lm 5 # DrY n

lm sin u du dw

of the function Dr(u, w) from (46), namely

R23M n
klm 5

1 2 e(k 1 3)Qlm

k 1 3
rn

lm 2 e(k 1 3)[Slmrn
l12,m 1 Tlmrn

l22,m]

1 O((ek)2) (A.1)

Here Qlm, Slm, Tlm are known positive rational fractions of l and m bounded
for all pertinent values of those parameters,

Qlm 5
(l 2 m 1 1) (l 1 m 1 1)

(2l 1 1)(2l 1 3)
1

(l 1 m) (l 2 m)
(2l 2 1)(2l 1 1)

Slm 5
(l 2 m 1 1) (l 2 m 1 2)

(2l 1 1) (2l 1 3)
, Tlm 5

(l 1 m)(l 1 m 2 1)
(2l 2 1)(2l 1 1)
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Formula (A.1) is slightly different for the case l 5 m 5 0, but we do not
need it.

For k 5 l the left-hand side of the equality (A.1) is given via an
lm

according to (37):

R23 M
2 2 dm0

(l 1 m)!
(l 2 m)!

an
lm

5
1 2 e(l 1 3)Qlm

l 1 3
rn

lm 2 e(l 1 3)[Slmrn
l12,m 1 Tlmrn

l22,m] 1 O((el)2)

This is a tridiagonal system of linear algebraic equations for rn
lm with small

off-diagonal elements. Solving it for rn
lm, we express the latter in terms of

an
lm:

R3

M
rn

lm 5
l 1 3
Nlm

an
lm

1 eFl 1 3
Nlm

Qlman
lm 1

l 1 5
Nl12m

Slman
l12m 1

l 1 1
Nl22m

Tlman
l22mG

1 O((el)2) (A.2)

where

Nlm 5 (2 2 dm0)
(l 2 m)!
(l 1 m)!

Introducing now the expression (A.2) back into the general formula (A.1), we
get all moments, with any k, expressed through the gravitational coefficients:

M n
klm 5

M
2 2 dm0

H(l 1 m)!
(l 2 m)!

l 1 3
k 1 3

an
lm

2 e
k 1 2
k 1 3

[Ṽlman
lm 1 S̃lman

l12,m 1 T̃lman
l22,m]J 1 O((el)2) (A.3)

with the quantities Q̃lm, S̃lm, T̃lm simply related to Qlm, Slm, Tlm, respectively:

Q̃lm 5
(l 1 m)!
(l 2 m)!

Qlm, S̃lm 5
(l 1 m 1 2)!
(l 2 m 1 2)!

Slm,

T̃lm 5
(l 1 m 2 2)!
(l 2 m 2 2)!

Tlm

We finally set k 5 l 6 1 in (A.3) and use the resulting expressions in the
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relation (38), completing thus the last step of the procedure described in
Section 8 and obtaining the equalities (48) for pin

lm (model A).
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